Основные публикации сотрудников лаборатории математической физиологии
 

2023

  • Nesterova T, Rokeakh R, Solovyova O, Panfilov A. Mathematical Modelling of Leptin-Induced Effects on Electrophysiological Properties of Rat Cardiomyocytes and Cardiac Arrhythmias // Mathematics. 2023. V. 11(4), 874.
    doi: 3390/math11040874
    IF (2022)=2.4, Q1
  • Kursanov A., Balakina-Vikulova N.A., Solovyova O., Panfilov A., Katsnelson L.B. In silico analysis of the contribution of cardiomyocyte-fibroblast electromechanical interaction to the arrhythmia // Frontiers in Physiology. 2023. V. 14. 1123609.
    doi: 3389/fphys.2023.1123609
    IF (2022)=4, Q2
  • Dokuchaev A., Kursanov A., Balakina-Vikulova N.A., Katsnelson L., Solovyova O. The importance of mechanical conditions in the testing of excitation abnormalities in a population of electro-mechanical models of human ventricular cardiomyocytes // Frontiers in Physiology. 2023. V. 14. 1187956.
    doi: 3389/fphys.2023.1187956
    IF (2022)=4, Q2
  • Dokuchaev A., Chumarnaya T., Bazhutina A., Khamzin S., Lebedeva V., Lyubimtseva T., Zubarev S., Lebedev D., Solovyova O. Optimization of left ventricular pacing site in cardiac resynchronization therapy using combination of personalized computational modeling and machine-learning // Frontiers in Physiology. 2023. V.14. 1162520.
    doi: 3389/fphys.2023.1162520
    IF (2022)=4, Q2
  • Башмакова Н.В., Севостьянова О.Ю., Чумарная Т.В., Обоскалова Т.А. Распространенность доброкачественной дисплазии молочной железы в Уральском федеральном округе // Акушерство и гинекология. Т. 8. с. 103-110.
    doi: 10.18565/aig.2023.131
    Scopus, РИНЦ
  • Маркова Т.В., Косовцова Н.В., Шумаков С.Ю., Чумарная Т.В., Ермак Е.М., Поспелова Я.Ю. Роль ультразвуковых маркеров I триместра в прогнозировании синдрома фето-фетальной трансфузии при монохориальном многоплодии // РМЖ. Мать и дитя. 2023. Т. 6(3). с. 226–232.
    doi: 32364/2618-8430-2023-6-3-2

ПАТЕНТЫ и другие РИД

  • Способ прогнозирования эффективности электрокардиостимуляционной ресинхронизирующей терапии у больных с дилатационной кардиомиопатией в ранний послеоперационный период // Патент на изобретение № 2801127. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 02 августа 2023 г. Авторы: Идов Э.М., Михайлов С.П., Алуева Ю.С., Шахмаева Н.Б., Соловьева О.Э., Чумарная Т.В. Правообладатели: СОКБ №1, ИИФ УрО РАН.

  • Способ прогнозирования эффективности сердечной ресинхронизирующей терапии с использованием оптимизации расположения стимулирующих электродов // Патент на изобретение № 2806486. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 01 ноября 2023 г. Авторы: Соловьева О.Э., Бажутина А.Е., Докучаев А.Д., Рокеах Р.О., Хамзин С.Ю., Чумарная Т.В., Зубарев С.В., Лебедева В.К., Лебедев Д.С., Любимцева Т.А. Правообладатели: ИИФ УрО РАН, НМИЦ им. В.А. Алмазова.

  • LKLVS - Lukas Kanade Left Ventricle Segmentation // Свидетельство о государственной регистрации программы для ЭВМ. № 2023619715. Дата государственной регистрации в Реестре программ для ЭВМ 15 мая 2023. Авторы: Зюзин В.В., Чумарная Т.В., Рокеах Р.О., Бабаков В.О., Поршнев С.В., Соловьева О.Э. Правообладатели: УрФУ, ИИФ УрО РАН.

  • LVFG - Left Ventricle Function Geometry // Свидетельство о государственной регистрации программы для ЭВМ. № 2023665251. Дата государственной регистрации в Реестре программ для ЭВМ 13 июля 2023 г. Авторы: Чумарная Т.В., Рокеах Р.О., Соловьева О.Э. Правообладатели: ИИФ УрО РАН.

  • LVSSA - Left Ventricle Statistical Shape Analysis // Свидетельство о государственной регистрации программы для ЭВМ. № 2023680889. Дата государственной регистрации в Реестре программ для ЭВМ 20 октября 2023 г. Авторы: Рокеах Р.О. Правообладатели: ИИФ УрО РАН.

 2022

  • Ryashko L., Bashkirtseva I., Solovyova O. Stochastic dynamics in the Li–Rinzel calcium oscillation model // Mathematical Methods in the Applied Sciences. V. 45(13), p. 7962-7970.
    doi: 1002/mma.7675
    IF (2021)=3.007, Q1
  • Khokhlova A., Myachina T., Butova X., Kochurova A., Polyakova E., Galagudza M., Solovyova O., Kopylova G., Shchepkin D. The Acute Effects of Leptin on the Contractility of Isolated Rat Atrial and Ventricular Cardiomyocytes // International Journal of Molecular Sciences. 2022. V. 23, № 15. p. 8356.
    doi: 3390/ijms23158356
    IF (2021) = 6.208, Q1
  • Karlova M., Abramochkin D. V., Pustovit K. B., Nesterova T., Novoseletsky V., Loussouarn G., Zaklyazminskaya E., Sokolova O. S. Disruption of a Conservative Motif in the C-Terminal Loop of the KCNQ1 Channel Causes LQT Syndrome // International Journal of Molecular Sciences. 2022. V. 23, № 14. p. 7953.
    doi: 3390/ijms23147953
    IF (2021) = 6.208, Q1
  • Khokhlova A., Myachina T., Volzhaninov D., Butova X., Kochurova A., Berg V., Gette I., Moroz G., Klinova S., Minigalieva I., Solovyova O., Danilova I., Sokolova K., Kopylova G., Shchepkin D. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum // International Journal of Molecular Sciences. 2022. V. 23, № 3. P. 1719.
    doi: 3390/ijms23031719
    IF (2021) = 6.208, Q1
  • Albors C., Lluch È., Gomez J.F., Cedilnik N., Mountris K.A., Mansi T., Khamzin S., Dokuchaev A., Solovyova O., Pueyo E., Sermesant M., Sebastian R., Morales H.G., Camara O.. Meshless electrophysiological modeling of cardiac resynchronization Therapy—Benchmark analysis with finite-element methods in experimental data // Applied Sciences (Switzerland). 2022. V. 12(13)
    doi: 3390/app12136438
    IF (2021) = 2.838, Q2
  • Khokhlova A., Solovyova O., Kohl P., Peyronnet R. Single cardiomyocytes from papillary muscles show lower preload-dependent activation of force compared to cardiomyocytes from the left ventricular free wall // Journal of Molecular and Cellular Cardiology. 2022. 166, p. 127-136.
    doi: 10.1016/j.yjmcc.2022.02.008
    IF (2021) = 5.763, Q2
  • Butova X., Myachina T., Simonova R., Kochurova A., Bozhko Y., Arkhipov M., Solovyova O., Kopylova G., Shchepkin D., Khokhlova A. Peculiarities of the Acetylcholine Action on the Contractile Function of Cardiomyocytes from the Left and Right Atria in Rats // Cells. 2022. V. 11, 3809.
    doi: 3390/cells11233809
    IF (2021)=7.666, Q1
  • Parikh J., Rumbell T., Butova X., Myachina T., Acero J.C., Khamzin S., Solovyova O., Kozloski J., Khokhlova A., Gurev V. Generative adversarial networks for construction of virtual populations of mechanistic models: simulations to study Omecamtiv Mecarbil action // Journal of Pharmacokinetics and Pharmacodynamics. 2022. V. 49, p. 51–64.
    doi: 1007/s10928-021-09787-4
    IF (2021)=2.41, Q4
  • Balakina-Vikulova N.A., Katsnelson L.B. Integrative Mathematical Model of Electrical, Metabolic and Mechanical Processes in Human Cardiomyocytes // Journal of Evolutionary Biochemistry and Physiology. V. 58 (Suppl 1), S107–S124.
    doi: 10.1134/S0022093022070122
    IF (2021)=1.621, Q4
  • Ryvkin A., Markov N., Yudenko V. Calcium Sparks in Cardiac Pacemaker Cells at Different Temperatures. Computer Modelling // Journal of Evolutionary Biochemistry and Physiology. - 2022. - 58 (Suppl 1), S125 - S133.
    doi: 1134/S0022093022070134
    IF (2021)=1.621, Q4
  • Nesterova T., Ushenin K., Solovyova O. Effect of dofetilide on electrophysiological function of human atrial cardiomyocytes in different age groups // AIP Conference Proceedings. 2022. V. 2390, 030062.
    doi: 1063/5.0069260
    Scopus
  • Dokuchaev A., Khamzin S., Solovyova O. In Silico Study of Drug-Effects on Cardiomyocytes during Aging // AIP Conference Proceedings. V. 2390, 030012.
    doi: 10.1063/5.0070456
    Scopus
  • Bazhutina A., Zubarev S., Budanova M. Accuracy of cardiac scar and fibrosis geometry in ventricular models affects electrical dyssynchrony biomarkers and ML prediction score of CRT response // 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2022, pp. 280-283.
    doi: 1109/CSGB56354.2022.9865443
    Scopus
  • Mangileva D., Konovalov P., Kursanov A., Bernikova O., Tsvetkova A., Ovechkin A., Grubbe M., Azarov J., Katsnelson L. Mechanical Manifestation of Complete and Incomplete Spiral Wave Break Up // 2022 IEEE International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). 11-13th November, 2022. Novosibirsk-Yekaterinburg (Hybrid Event). 2022. pp. 530-533.
    doi: 1109/SIBIRCON56155.2022.10016991
    Scopus
  • Марков Н.С., Ушенин К.С., Божко Я.Г., Архипов М.В., Соловьёва О.Э. Выделение фенотипов пароксизмальной формы фибрилляции предсердий на основе характеристик вариабельности сердечного ритма // Казанский медицинский журнал. 2021. Т. 102. №5. C. 778-787.
    doi: 17816/KMJ2021-778
    Scopus, РИНЦ
  • Чумарная Т.В., Любимцева Т.А., Лебедева В.К., Гасымова Н.З., Лебедев Д.С., Соловьева О.Э. Оценка межжелудочковой электрической задержки при сердечной ресинхронизирующей терапии у пациентов с квадриполярными системами в долгосрочном послеоперационном наблюдении. Российский кардиологический журнал. 2022. Т.27, №7, 5121.
    doi: 15829/1560-4071-2022-5121
    Scopus, РИНЦ
  • Архипов М.В., Марков Н.С., Божко Я.Г., Ушенин К.С., Соловьева О.Э. Имеет ли смысл изучение вариабельности сердечного ритма при пароксизмальной форме фибрилляции предсердий во время регистрации эпизода аритмии в структуре записи суточного мониторирования электрокардиограммы? // Российский кардиологический журнал. 2022. Т. 27, №7, 5125.
    doi: 15829/1560-4071-2022-5125
    Scopus, РИНЦ
  • Беломестнов С.Р., Севостьянова О.Ю., Чумарная Т.В., Томина Ю.В. Прогноз фетальной макросомии по весу плода в третьем триместре // Уральский медицинский журнал. 2022. Т. 21(5). с. 4-8.
    doi: 52420/2071-5943-2022-21-5-4-8
    РИНЦ

 

2021

  • Peyronnet R, Solovyova O, Iribe G and Katsnelson LB. Editorial: Mechano-calcium, mechano-electric, and mechano-metabolic feedback loops: contribution to the myocardial contraction in health and diseases // Frontiers in Physiology. 2021. V. 12, 418.
    doi: 10.3389/fphys.2021.676826
    ИФ(2020)= 4.566, Q1
  • Khamzin S., Dokuchaev A., Bazhutina A., Chumarnaya T., Zubarev S., Lyubimtseva T., Lebedeva V., Lebedev D., Gurev V.,  Solovyova O. Machine Learning prediction of cardiac resynchronisation therapy response from combination of clinical and model-driven data // Frontiers in Physiology. 2021. V. 12, 2283.
    doi: 10.3389/fphys.2021.753282
    ИФ(2020)= 4.566, Q1
  • Konovalov P., Mangileva D., Dokuchaev A., Solovyova O., Panfilov A. Rotational activity around an obstacle in 2D cardiac tissue in presence of cellular heterogeneity // Mathematics 2021, 9(23), 3090;
    doi: 10.3390/math9233090
    ИФ(2020)=2.258, Q1
  • Rokeakh R., Nesterova T., Ushenin K., Polyakova E., Sonin D., Galagudza M., Tim De Coster, Panfilov A., Solovyova O. Anatomical model of rat ventricles to study cardiac arrhythmias under infarction injury // Mathematics, 2021, 9(20), 2604.
    doi: 10.3390/math9202604
    ИФ(2020)=2.258, Q1
  • Mangileva D., Konovalov P., Dokuchaev A., Solovyova O., Panfilov A. Period of arrhythmia anchored around an infarction scar in an anatomical model of the human ventricles // Mathematics, 2021, 9(22), 2911.
    doi: 10.13390/math9222911
    ИФ(2020)=2.258, Q1
  • Ushenin K., Kalinin V., Gitinova S., Sopov O., Solovyova O. Parameter variations in personalized electrophysiological models of human heart ventricles // Plos One. 2021. V. 16(4), e0249062.
    doi: 10.1371/journal.pone.0249062
    IF (2020) = 3.24, Q2
  • Bazhutina A., Balakina-Vikulova N., Kursanov A., Solovyova O., Panfilov A., Katsnelson L.B. Mathematical modelling of the mechano-electric coupling in the human cardiomyocyte electrically connected with fibroblasts // Progress in Biophysics and Molecular Biology. 2021, V. 159, p. 46-57.
    doi: 10.1016/j.pbiomolbio.2020.08.003
    ИФ(2020)=3.667, Q2
  • Чумарная Т.В., Любимцева Т.А., Солодушкин С.И., Лебедева В.К., Лебедев Д.С., Соловьева О.Э. Оценка эффективности сердечной ресинхронизирующей терапии в отдаленном послеоперационном периоде // Российский кардиологический журнал. 2021. Т. 26. №7. С. 48-60
    doi: 15829/1560-4071-2021-4531
    РИНЦ, Scopus
  • Balakina-Vikulova N., Katsnelson L. Work Performance in failing myocardium assessed in a mathematical model of the human ventricular myocyte electromechanical coupling // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 1-4
    doi: 10.1109/CSGB53040.2021.9496049
    Scopus
  • Dokuchaev A.D., Bazhutina A.E., Khamzin S.Yu., Zubarev S., Solovyova O. Comparison of His-Purkinje and Biventricular pacing in patient-specific computer models // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 400-403.
    doi: 10.1109/CSGB53040.2021.9496032
    Scopus
  • Kursanov A.G., Balakina-Vikulova N., Katsnelson L. Arrhythmogenesis in calcium-overloaded human cardiomyocytes in isolation and within cardiac tissue. Simulation study // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 370-373.
    doi: 10.1109/CSGB53040.2021.9496045
    Scopus
  • Bazhutina A.E., Dokuchaev A.D., Khamzin S.Yu., Zubarev S., Solovyova O. Comparison of CRT optimization results for different accuracy personalized models // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 420-424.
    doi: 10.1109/CSGB53040.2021.9496023
    Scopus
  • Markov N., Ushenin K., Bozhko Y., Arkhipov M., Solovyova O. Heart rate variability reveals two phenotypes of atrial fibrillation // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 460-463.
    doi: 1109/CSGB53040.2021.9496013
    Scopus
  • Markov N., Lebedeva E., Gonotkov M., Ryvkin A. In silico study of the ontogenetic changes in action potential properties of mouse cardiac pacemaker cells // 2021 IEEE Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), 2021, pp. 480-483.
    doi: 10.1109/CSGB53040.2021.9496013
    Scopus
  • Mangileva D., Kursanov A., Tsvetkova A., Bernikova O., Ovechkin A., Grubbe M., Azarov J., Katsnelson L. Preprocessing images algorithm without gaussian shaped particles for piv analysis and imaging vortices on the epicardial surface // CEUR Workshop Proceedings, 2021, V. 3027, p. 519-528.
    Scopus
  • Марков Н.С., Ушенин К.С., Божко Я.Г., Архипов М.В., Соловьёва О.Э. Выделение фенотипов пароксизмальной формы фибрилляции предсердий на основе характеристик вариабельности сердечного ритма // Казанский медицинский журнал. - 2021. - Т. 102. - №5. - C. 778-787.
    doi: 10.17816/KMJ2021-778
    Scopus, РИНЦ

 

2020

  • Nezlobinsky T., Solovyova O. & Panfilov A.V. Anisotropic conduction in the myocardium due to fibrosis: the effect of texture on wave propagation. Scientifiс 2020, V. 10, 764.
    doi: 10.1038/s41598-020-57449-1
    ИФ(2019) = 3.998, Q1
  • Di Achille P., Parikh J., Khamzin S., Solovyova O., Kozloski J., Gurev V. (2020) Model order reduction for left ventricular mechanics via congruency training. PLOS ONE. 2020. V. 15(1), e0219876.
    doi: 10.1371/journal.pone.0219876
    ИФ(2019)= 2.74, Q2
  • Pravdin S., Konovalov P., Dierckx H., Solovyova O., Panfilov A.V. Drift of Scroll Waves in a Mathematical Model of a Heterogeneous Human Heart Left Ventricle. Mathematics 2020, V. 8 (5), 776.
    doi: 10.3390/math8050776
    ИФ(2019)= 1.747, Q1
  • Dokuchaev A., Panfilov A.V. & Solovyova O. Myocardial Fibrosis in a 3D Model: Effect of Texture on Wave Propagation. Mathematics, 2020. V. 8(8), 1352.
    doi: 10.3390/math8081352
    ИФ(2019)= 1.747, Q1
  • Khokhlova A., Konovalov P., Iribe G., Solovyova O. Katsnelson L. The Effects of Mechanical Preload on Transmural Differences in Mechano-Calcium-Electric Feedback in Single Cardiomyocytes: Experiments and Mathematical Models // Frontiers in Physiology, V. 11, 171.
    doi: 10.3389/fphys.2020.00171
    ИФ(2019)= 3.367, Q1
  • Balakina-Vikulova N.A., Panfilov A., Solovyova O., Katsnelson L.B. Mechano-calcium and mechano-electric feedbacks in the human cardiomyocyte analyzed in a mathematical model // The Journal of Physiological Sciences. 2020. V. 70, 12.
    doi: 10.1186/s12576-020-00741-6
    ИФ(2019)= 2.955, Q2
  • Khamzin S., Dokuchaev A., Solovyova O. Prediction of CRT Response on Personalized Computer Models. // Lecture Notes in Computer Science, 2020. V. 12009. p. 352-363.
    doi: 10.1007/978-3-030-39074-7_37
    WOS
  • Nesterova T., Ushenin K., Shmarko D., Solovyova O. Electrophysiological Biomarkers for Age-Related Changes in Human Atrial Cardiomyocytes: In Silico Study // ITM Web of Conferences. 2020. V. 31, 01004.
    doi: 10.1051/itmconf/20203101004
    WOS
  • Dokuchaev A., Khamzin S., Solovyova O. In-silico study of age-related ionic remodeling in human ventricular cardiomyocytes // BIO Web Conf. 2020., V. 22, 01024.
    doi: 10.1051/bioconf/20202201024
    WOS
  • Nesterova, T., Shmarko, D., Ushenin, K., Solovyova, O. In-silico analysis of aging mechanisms of action potential remodeling in human atrial cardiomyocites // BIO Web of Conferences. 2020. V. 22, 01025.
    doi: 10.1051/bioconf/20202201025
  • Ushenin K., Nesterova T., Shmarko D., Sholokhov V. Phase Mapping for Cardiac Unipolar Electrograms with Neural Network Instead of Phase Transformation // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020, p. 117-120.
    doi: 10.1109/USBEREIT48449.2020.9117627
    Scopus
  • Sholokhov VD, Ushenin KS, Zverev VS, Kursanov AG. Dependence of the left ventricular ejection fraction on the myocardial fiber orientation in the mechanical model // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020, p. 0024-0027.
    doi: 10.1109/USBEREIT48449.2020.9117769
    Scopus
  • Markov N, Ryvkin A. Simulation of the Submembrane Calcium Diffusion in Cardiac Cells // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020, p. 207-210.
    doi: 10.1109/USBEREIT48449.2020.9117714
    Scopus
  • Zyuzin V., Neustroev D., Mukhtarov A., Chumarnaya T. Segmentation of 2D Echocardiography Images using Residual Blocks in U-Net Architectures // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020, p. 499-502.
    doi: 10.1109/USBEREIT48449.2020.9117678
    Scopus
  • Mangileva D., Dokuchaev A., Khamzin S., Lyubimtseva, Solovyova O., Zubarev S., Lebedev D. Removing Artifacts from the Computed Tomography Images of the Heart Using Neural Network with Partial Convolution Layer // 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), Yekaterinburg, Russia, 2020, p. 195-198.
    doi: 10.1109/USBEREIT48449.2020.9117624
    Scopus
  • Markov N.S., Ryvkin A.M. Studying the peculiarities of calcium sparks formation process in cardiac cells // Mathematical Analysis With Applications (S. Pinelas et al (eds.)). In Springer Proceedings in Mathematics & Statistics, 2020. V. 318.  p. 253-264.
    doi: 10.1007/978-3-030-42176-2_25
    WOS, Scopus
  • Ryvkin A.M., Budeeva E.A. Modeling the effect of ion channels inhibitors on the functioning of cardiac sinoatrial node cells // Mathematical Analysis With Applications (S. Pinelas et al (eds.)). In Springer Proceedings in Mathematics & Statistics, 2020. V. 318. p. 301-309.
    doi: 10.1007/978-3-030-42176-2_29
    WOS, Scopus
  • Nesterova Т., Shmarko D., Ushenin K., Solovyova O. Age-dependent effects of chronic atrial fibrillation remodeling in population of human atrial cardiomyocyte models // AIP Conference Proceedings. 2020. V. 2313, 080020.
    doi: 10.1063/5.0033019
    Scopus
  • Rokeakh R., Zaripov Z., Nesterova T., Averchenko M., Zayakin M., Ushenin K., Solovyova O. Algorithm for search of abnormalities in populations of cardiomyocyte mathematical models // AIP Conference Proceedings. 2020. V. 2313, 080025
    doi: 10.1063/5.0032246
    Scopus
  • Rokeakh R., Ushenin K., Chumarnaya T., Alueva Y., Mikhailov S., Idov E., Solovyova O. Unsupervised learning reveals two phenotypes of left ventricle contraction in patients with heart failure // AIP Conference Proceedings. 2020. V. 2313(1). 070026.
    doi: 10.1063/5.0032269
    Scopus
  • Samun V. S., Sheka A. S., Chumarnaya T. V., Solovyova O. E. Comparison of neural network architectures for segmentation of the left ventricle on EchoCG images // AIP Conference Proceedings.  2020. V. 2313, 070014.
    doi: 10.1063/5.0032165
    Scopus
  • Ковтун О.П., Цывьян П.Б., Маркова Т.В., Чумарная Т.В. Ремоделирование сердца недоношенных детей // Вестник Российской академии медицинских наук, 2020. Т. 75(6). с. 631–637.
    doi: 15690/vramn1268
    РИНЦ
  • Чумарная Т.В., Идов Э.М., Кондрашов К.В., Михайлов С.П., Климушева Н.Ф., Быков А. Н., Кочмашева В.В., Алуева Ю.С., Соловьева О.Э. Сравнительная оценка стандартного эхокардиографического исследования и классификационной модели на основе параметров функциональной геометрии левого желудочка в диагностике систолической дисфункции трансплантированного сердца // Сибирский медицинский журнал. 2020. Т. 35(1), c. 107-116.
    doi: 10.29001/2073-8552-2020-35-1-107–116
    РИНЦ
  • Чумарная Т.В., Идов Э.М., Кондрашов К.В., Михайлов С.П., Климушева Н.Ф., Быков А.Н., Кочмашева В.В., Алуева Ю.С., Соловьева О.Э. Классификационная модель, основанная на параметрах функциональной геометрии левого желудочка, как новый фактор для ранней диагностики острого отторжения трансплантированного сердца // Вестник уральского государственного медицинского университета. 2020. Т. 1-2. с. 75-78.
    РИНЦ
  • Цывьян П.Б., Мальгина Г.Б., Кодкин В.Л., Косовцова Н.В., Маркова Т.В., Краева О.А., Мангалиева Д.В. Индекс производительности миокарда плода: физиология и клиническое значение // Акушерство и гинекология. 2020. Т. 10, с. 20-27.
    doi: 10.18565/aig.2020.10.20-27
    РИНЦ, Scopus

2019

  • Bazhutina A., Balakina-Vikulova N., Katsnelson L., Panfilov A.V., Solovyova O. Electromechanical Coupling in Cardiomyocytes Depends on Its Electrotonic Interaction With Fibroblasts: Simulation Study // Computing in Cardiology. V. 46.  2019. p. 1-4.
    doi: 10.22489/cinc.2019.237
    WOS, Scopus
  • Sholohov V., Zverev V., Kursanov A. Investigation of Mechanisms of Regulation of Electromechanical Function of Cardiomyocytes in the Biomechanical Model of Myocardium // Computing in Cardiology.  2019. V. 45. 9005625. p. 1-4.
    doi: 10.22489/CinC.2019.211
    WOS, Scopus
  • Ushenin K., Detkov N., Nesterova T., Shmarko D., Razumov A.A., Solovyova O. Unsupervised Learning to Analysis of Population of Models in Computational Electrophysiological Studies  // International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE. 2019. p. 0379 - 0383.
    doi: 10.1109/SIBIRCON48586.2019.8958141
    Scopus
  • Sheka A., Samun V., Chumarnaya T., Solovyova O. Segmentation of the Left Ventricle on EchoCG Images Using MultiResUnet // International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE. 2019. p. 0775-0779.
    doi: 10.1109/SIBIRCON48586.2019.8958128
    Scopus
  • Dokuchaev A., Khamzin S., Mangileva D., Chumarnaya T.,  Solovyova O. Impact of transmural dimension of myocardial infarction on the dynamics of spiral waves in realistic models of human heart left ventricle // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. p. 131-134.
    doi: 10.1109/USBEREIT.2019.8736650
    Scopus
  • Zyuzin V., Chumarnaya  T. Comparison of Unet architectures for identification of the left ventricle endocardial border on two-dimensional ultrasound images // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. p. 110-113.
    doi: 10.1109/USBEREIT.2019.8736616
    Scopus
  • Bazhutina A., Balakina-Vikulova N., Solovyova O., Katsnelson L. Mathematical model of electrotonic interaction  between mechanically active cardiomyocyte and fibroblasts // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. p. 114-117.
    doi: 10.1109/USBEREIT.2019.8736669
    Scopus
  • Razumov A.A., Ushenin K.S., Potekhina V.M., Shmarko D., Solovyova O. Processing of Cardiac Optical Mapping Data for Cameras with Hexagonally Packed Photodiode Array. K-means Cluster Maps for Experiment Analysis // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. p. 32-35.
    doi: 10.1109/USBEREIT.2019.8736678
    Scopus
  • Ushenin K., Nesterova T., Shmarko D., Razumov A. Approximation of Action Potential in Populations of Cardiomyocyte Electrophysiology Models // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. p. 182-185.
    doi: 10.1109/USBEREIT.2019.8736682
    Scopus
  • Ryvkin A.M., Markov N.S. Age-related Calcium Sparks Alterations in Heart Pacemaker Cells. Computer Modeling // Proceedings - 2019 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology, USBEREIT 2019, 2019. pp 163-166.
    doi: 10.1109/USBEREIT.2019.8736661
    Scopus
  • Shmarko D., Nesterova T., Ushenin K. Analysis of approaches to building a probability density function for the mathematical model parameters of rat atrial cardiomyocytes // AIP Conference Proceedings. 2019. V. 2174, p. 020254-1—020254-6. 
    doi: 10.1063/1.5134405
    WOS, Scopus
  • Nesterova T., Shmarko D., Ushenin K. In silico study of cardiomyocytes aging in human and canine atriums // AIP Conference Proceedings. 2019.  V. 2174, p. 020231-1—020231-4.
    doi: 10.1063/1.5134382
    WOS, Scopus
  • Мангилева Д.В., Докучаев А.Д., Хамзин С.Ю., Чумарная Т.В., Соловьева О.Э. Исследование влияния постинфарктного рубца на динамику спиральных волн в моделях левого желудочка сердца человека // Дневник казанской медицинской школы. 2019. T. 1 (23). с. 57-61.
    РИНЦ
  • Чумарная Т.В., Быков А. Н., Михайлов С.П., Идов Э.М., Соловьева О.Э. Оценка систолической функции трансплантированного сердца с помощью классификационной модели на основе параметров функциональной геометрии левого желудочка сердца // Дневник казанской медицинской школы. 2019. T. 1 (23). с. 116-120.
    РИНЦ

2018

  • Khokhlova A., Iribe G., Katsnelson L., Naruse K., Solovyova O. The effects of load on transmural differences in contraction of isolated mouse ventricular cardiomyocytes // J Mol Cell Cardiol. 2018. V. 114, p. 276–287.
    doi: 10.1016/j.yjmcc.2017.12.001
    IF(2017)=5.296, Q1
  • Di Achille P., Harouni A., Khamzin S., Solovyova O., John Rice J., Gurev V. Gaussian Process regressions for inverse problems and parameter searches in models of ventricular mechanics // Frontiers in Physiology. 2018. V. 9, 1002.
    doi: 10.3389/fphys.2018.01002
    IF(2017) - 3.394, Q1
  • Khokhlova A., Balakina-Vikulova N., Katsnelson L., Iribe G., Solovyova O. Transmural cellular heterogeneity in myocardial electromechanics // The Journal of Physiological Sciences, 2018. V. 68(4), p. 387-413.
    doi: 10.1007/s12576-017-0541-0
    IF(2016)=2.075, Q2
  • Razumov A.A., Ushenin K.S., Butova K., Solov’eva O.E. The study of the influence of heart ventricular wall thickness on pseudo-ECG // Russ. J. Numer. Anal. Math. Modelling, 2018. V. 33(5), p. 301-313.
    doi: 10.1515/rnam-2018-0025
    IF(2017)=0.662, Q4
  • Chumarnaya T.V., Kraeva O.A., Tsyvian P.B., Solovyova O.E. Functional geometry of the left ventricle in term newborns with different birth weights // Human Physiology, 2018. V. 44(5), p. 565–573.
    doi: 10.1134/S0362119718030040
    РИНЦ, Scopus
  • Nesterova T. M., Ushenin K. S., Balakina-Vikulova N. A., and Solovyova O. Study of calcium overload in one-dimensional cardiac model. Role of spatial distribution of pathology // Mathematical Biology and Bioinformatics, 2018. V. 13, p. 467-479.
    doi: 10.17537/2018.13.466
    РИНЦ, Scopus
  • Khamzin S.,  Dokuchaev A.,  Bazhutina A., Zubarev S., Chumarnaya T., Lyubimtseva T., Lebedev D., Solovyova O. Optimization of left ventricular lead position based on a computer model of the heart for cardiac resynchronization therapy //  2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018.  pp. 68-71.
    doi: 10.1109/USBEREIT.2018.8384552
    WOS, Scopus
  • Zyuzin V., Porshnev S., Mukhtarov A., Chumarnaya T., Solovyova O., Bobkova A., Myasnikov V. Identification of the left ventricle endocardial border on two-dimensional ultrasound images using the convolutional neural network Unet // 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018.  pp. 76-78.
    doi: 10.1109/USBEREIT.2018.8384554
    WOS, Scopus
  • Sulman T., Solovyova O., Katsnelson L. Combined mathematical model of the electrical and mechanical activity of the human cardiomyocyte // 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018.  pp. 25-28.
    doi: 10.1109/USBEREIT.2018.8384541
    WOS, Scopus
  • Ryvkin A., Markov N. Modeling of calcium sparks in heart cells. 2D calcium diffusion problem. // 2018 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT), 2018. p. 107-110.
    doi: 10.1109/USBEREIT.2018.8384562
    WOS, Scopus
  • Ryvkin A., Markov N. RyRs Coupling Causes a Calcium Leak in Cardiac Cell // Computing in Cardiology. 2018. V. 45. p.1-4.
    doi: 10.22489/CinC.2018.323
    WOS, Scopus
  • Chumarnaya T., Mikhaylov S.P., Idov E.M., Solovyova O. Classification Model of Heart Transplant Outcomes Based on Features of Left Ventricular Functional Geometry // Computing in Cardiology. 2018. V. 45. p.1-4.
    DOI: 10.22489/CinC.2018.028
    WOS, Scopus
  • Balakina-Vikulova N., Solovyova O., Panfilov A., Katsnelson L. Mechano-Electric Feedbacks in a New Model of the Excitation-Contraction Coupling in Human Cardiomyocytes // Computing in Cardiology. 2018. V. 45. p. 1-4.
    doi: 10.22489/CinC.2018.065
    WOS, Scopus
  • Katsnelson L., Konovalov P., Solovyova O. New Mathematical Model of Electromechanical Coupling in Rat Cardiomyocytes  // Computing in Cardiology. 2018. V. 45. p. 1-4.
    doi: 10.22489/CinC.2018.062
    WOS, Scopus
  • Kursanov A., Zverev V., Katsnelson L., Solovyova O. Detailed Electromechanical Model of Ventricular Wedge // Computing in Cardiology. 2018. V. 45. p. 1-4.
    doi: 10.22489/CinC.2018.280
    WOS, Scopus

2017

  • Khokhlova A., Balakina-Vikulova N., Katsnelson L., Solovyova O. Effects of cellular electromechanical coupling on functional heterogeneity in a one-dimensional tissue model of the myocardium // Computers in Biology and Medicine. 2017. V. 84, p. 147-155.
    doi: 10.1016/j.compbiomed.2017.03.021
    IF(2016)=1.836
  • Iaparov B.I., Khamzin S.Yu., Moskvin A.S., Solovyova O.E. Mathematical modeling shows the frequency of Ca2+ sparks in cells depends on the ryanodine receptor’s arrangement // Procedia Computer Science. 2017. V. 119, p. 190-196.
    doi: 10.1016/j.procs.2017.11.176
    WOS, Scopus
  • Iaparov, B., Moskvin, A.S., Solovyova, O.E. Temperature sensitivity of ligand-gated ion channels: Ryanodine receptor case // Journal of Physics: Conference Series. 2017. V. 929(1), p. 012019
    doi: 10.1088/1742-6596/929/1/012019
    Scopus
  • Chumarnaya  T., Trifanova M., Lyubimtseva T., Lebedeva V., Poroshin I.,  Trukshina M., Lyasnikova E., Sitnikova M., Lebedev D., Solovyova O. Impact of Interventricular Lead Distance on Cardiac Resynchronization Therapy Outcomes // Computing in Сardiology. 2017. V. 44, p.1-4.
    doi: 10.22489/CinC.2017.290-106
    WOS, Scopus
  • Ковтун О.П., Цывьян П.Б., Соловьева О.Э. Перинатальное программирование и старение кардиомиоцитов // Российский вестник перинатологии и педиатрии. 2017.  Т. 62(1), с. 33-39.
    doi: 10.21508/1027-4065-2017-62-1-33-39
    РИНЦ

Наиболее цитируемые публикации до 2017 года
(более 10 цитирований по WoS на 01.11.2023):

  • Markhasin V.S., Solovyova O., Katsnelson L.B., Protsenko Y., Kohl P., Noble D. Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models // Progress in Biophysics and Molecular Biology, 2003. V. 82(1—3). P. 207—220.
    doi: 1016/S0079-6107(03)00017-8
  • Izakov V.Ya., Katsnelson L.B., Blyakhman F.A., Markhasin V.S., Shklyar T.F. Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading // Circulation Research, 1991. V. 69. P. 1171-1184.
    doi: 1161/01.res.69.5.1171
  • Quinn T.A., Granite S., Allessie M.A., Antzelevitch C., Bollensdorff C., Bub G., Burton R.A.B., Cerbai E., Chen P.S., Delmar M., DiFrancesco D., Earm Y.E., Efimov I.R., Egger M., Entcheva E., Fink M., Fischmeister R., Franz M.R., Garny A., Giles W.R., Hannes T., Harding S.E., Hunter P.J., Iribe G., Jalife J., Johnson C.R., Kass R.S., Kodama I., Koren G., Lord P., Markhasin V.S., Matsuoka S., McCulloch A.D., Mirams G.R., Morley G.E., Nattel S., Noble D., Olesen S.P., Panfilov A.V., Trayanova N.A., Ravens U., Richard S., Rosenbaum D.S., Rudy Y., Sachs F., Sachse F.B., Saint D.A., Schotten U., Solovyova O., Taggart P., Tung L., Varró A., Volders P.G., Wang K., Weiss J.N., Wettwer E., White E., Wilders R., Winslow R.L., Kohl P. Minimum Information about a Cardiac Electrophysiology Experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing  // Progress in Biophysics and Molecular Biology, 2011. V. 107 (1), p. 4-10
    doi: 1016/j.pbiomolbio.2011.07.001
  • Pravdin S.F., Berdyshev V.I., Panfilov A.V., Katsnelson L.B., Solovyova O., Markhasin V.S. Mathematical model of the anatomy and fibre orientation field of the left ventricle of the heart // BioMedical Engineering OnLine, 2013. V. 12(1), 18.
    doi: 1186/1475-925X-12-54
  • Solovyova O., Vikulova N., Katsnelson L.B., Markhasin V.S., Noble P.J., Garny A.F., Kohl P., Noble D. Mechanical interaction of heterogeneous cardiac muscle segments in silico: effects on Ca2+ handling and action potential // Int J of Bifurcation & Chaos, 2003. V. 13(12). P. 3757— 3782.
    doi: 1142/S0218127403008983
  • Sulman T., Katsnelson L.B., Solovyova O., Markhasin V.S. Mathematical Modeling of Mechanically Modulated Rhythm Disturbances in Homogeneous and Heterogeneous Myocardium with Attenuated Activity of Na+-K+ Pump. // Bulletin of Mathematical Biology. V. 70 №3, Р. 910-949, 2008.
    doi: 1007/s11538-007-9285-y
  • Pravdin S.F., Dierckx H., Katsnelson L.B., Solovyova O., Markhasin V.S., Panfilov A.V. Electrical Wave Propagation in an Anisotropic Model of the Left Ventricle Based on Analytical Description of Cardiac Architecture // PloS one. 2014. V. 9 (5). e93617.
    doi: 1371/journal.pone.0093617
  • Katsnelson L.B., Nikitina L.V., Chemla D., Solovyova O., Coirault C., Lecarpentier I., Markhasin V.S. Influence of viscosity on myocardium mechanical activity: A mathematical model. // Journal of Theoretical Biology. 2004. Vol. 230(3), p. 385-405
    doi: 1016/j.jtbi.2004.05.007
  • Katsnelson L.B., Markhasin V.S. Мathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium // Journal of Molecular and Cellular Cardiology. 1996. V. 28. № 3. p. 475-486.
    doi: 1006/jmcc.1996.0044
  • Solovyova O., Katsnelson L., Guriev S., Nikitina L., Protsenko Yu., Routkevitch S., Markhasin V. Mechanical inhomogeneity of myocardium studied in parallel and serial cardiac muscle duplexes: experiments and models. // Chaos, Solitons & Fractals. 2002. V. 13. P. 1685-1711.
    doi: 1016/S0960-0779(01)00175-8
  • Solovyova O., Katsnelson L.B., Kohl P., Konovalov P., Lookin O., Moskvin A.S., Vikulova N., Protsenko Yu.L., Markhasin V.S. Activation sequence as a key factor in spatio-temporal optimization of myocardial function. Philosophical Transactions of the Royal Society A., 2006, V. 364. p. 1367–1383
    doi: 1098/rsta.2006.1777
  • Markhasin V.S., Balakin A., Katsnelson L.B., Konovalov P., Lookin O., Protsenko Yu., Solovyova O. Slow force response and auto-regulation of contractility in heterogeneous myocardium // Progress in Biophysics and Molecular Biology. 2012. V. 110, p. 305-318.
    doi: 1016/j.pbiomolbio.2012.08.011
  • Katsnelson L.B., Solovyova O., Balakin A., Lookin O., Konovalov P., Protsenko Y., Sulman T., Markhasin V.S. Contribution of mechanical factors to arrhythmogenesis in calcium overloaded cardiomyocytes: Model predictions and experiments // Progress in Biophysics and Molecular Biology. 2011, V. 107(1), p. 81-89.
    doi: 1016/j.pbiomolbio.2011.06.001
  • Solovyova O., Katsnelson L. B., Kohl P., Panfilov A. V., Tsaturyan A. K., Tsyvian P. B. Mechano-electric heterogeneity of the myocardium as a paradigm of its function // Progress in Biophysics and Molecular Biology. 2016. V. 120(1-3). P. 249–254.
    doi 1016/j.pbiomolbio.2015.12.007
  • Pravdin S., Dierckx H., Markhasin V. S., Panfilov A. V. Drift of scroll wave filaments in an anisotropic model of the left ventricle of the human heart // BioMed Research International. 2015. V. 2015, 389830
    doi: 1155/2015/389830
  • Solovyova O., Katsnelson L.B., Konovalov P.V., Kursanov A.G., Vikulova N.A., Kohl P. and Markhasin V.S. The cardiac muscle duplex as a method to study myocardial heterogeneity // Progress in Biophysics and Molecular Biology. 2014. V.115, p. 115-128.
    doi: 1016/j.pbiomolbio.2014.07.010
  • Katsnelson L.B., Sulman T., Solovyova O., Markhasin V.S. Role of myocardial viscoelasticity in disturbances of electrical and mechanical activity in calcium overloaded cardiomyocytes: Mathematical modeling // Journal of Theoretical Biology. 2011. V. 272(1). P. 83-95.
    doi: 1016/j.jtbi.2010.11.035
  • Vikulova N.A., Katsnelson L.B., Kursanov A.G., Solovyova O., Markhasin V.S. Mechano-electric feedback in one-dimensional model of myocardium // Journal of Mathematical Biology. 2016. V. 73, pp. 335–366.
    doi: 1007/s00285-015-0953-5
  • Solovyova O.E., Vikulova N.A., Konovalov P.V., Kohl P., Markhasin V.S. Mathematical modelling of mechano-electric feedback in cardiomyocytes // Russian Journal of Numerical Analysis and Mathematical Modelling. 2004. V. 19(4), p. 331–35.
    doi: 1515/rnam.2004.19.4.331
  • Shchepkin D.V., Kopylova G.V., Nikitina L.V., Katsnelson L.B., Bershitsky B.Y. Effects of cardiac myosin binding protein-C on the regulation of interaction of cardiac myosin with thin filament in an in vitro motility assay // Biochemical and Biophysical Research Communications. 2010. V. 401. P. 159-163.
    doi: 1016/j.bbrc.2010.09.040
  • Katsnelson L.B., Izakov V.Ya., Markhasin V.S. Heart muscle: Mathematical modeling of the mechanical activity and modeling of mechanochemical uncoupling // General Physiology and Biophysics, 1990. V. 9. P. 218-244.
    ссылка
  • Nikitina L.V., Kopylova G.V., Shchepkin D.V., Katsnelson L.B. Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay // Biochemistry (Moscow), 2008. V. 73, p. 178-184.
    doi: 10.1134/S0006297908020090